
 1 البرمجھ الشیئیھ هالمحاضره العاشر

Class Hierarchies
Inheritance has been used to add functionality to an existing class. Now let’s

look at an example where inheritance is used for a different purpose: as part

of the original design of a program.

Our example models a database of employees of a widget company. We’ve

simplified the situation so that only three kinds of employees are

represented. Managers manage, scientists perform research to develop better

widgets, and laborers operate the dangerous widget-stamping presses.

The database stores a name and an employee identification number for all

employees. Nowever, for managers, it also stores their titles and golf club

dues. For scientists, it stores the number of scholarly articles they have

published. Laborers need no additional data beyond their names and

numbers.

Figure 1: class diagram for EMPLOY.

 2 البرمجھ الشیئیھ هالمحاضره العاشر

Example 1:-Write an oo program to model employ database using inheritance.

 3 البرمجھ الشیئیھ هالمحاضره العاشر

The main() part of the program declares four objects of different classes: two

managers, a scientist, and a laborer. (Of course many more employees of

each type could be defined, but the output would become rather large.) It

then calls the getdata() member functions to obtain information about each

employee, and the putdata() function to display this information.

Output of program

Enter data for manager 1

Enter last name: Wainsworth

Enter number: 10

Enter title: President

Enter golf club dues: 1000000

Enter data on manager 2

Enter last name: Bradley

 4 البرمجھ الشیئیھ هالمحاضره العاشر

Enter number: 124

Enter title: Vice-President

Enter golf club dues: 500000

Enter data for scientist 1

Enter last name: Hauptman-Frenglish

Enter number: 234234

Enter number of pubs: 999

Enter data for laborer 1

Enter last name: Jones

Enter number: 6546544

The program then plays it back.

Data on manager 1

Name: Wainsworth

Number: 10

Title: President

Golf club dues: 1000000

Data on manager 2

Name: Bradley

Number: 124

Title: Vice-President

Golf club dues: 500000

Data on scientist 1

Name: Hauptman-Frenglish

Number: 234234

Number of publications: 999

Data on laborer 1

 5 البرمجھ الشیئیھ هالمحاضره العاشر

Name: Jones

Number: 6546544

“Abstract” Base Class

. It may seem that the laborer class is unnecessary, but by making it a

separate class we emphasize that all classes are descended from the same

source, employee. Also, if in the future we decided to modify the laborer

class, we would not need to change the declaration for employee.

Constructors and Member Functions

There are no constructors in either the base or derived classes, so the

compiler creates objects of the various classes automatically when it

encounters definitions like manager m1, m2; using the default constructor

for manager calling the default constructor for employee.

The getdata() and putdata() functions in employee accept a name and

number from the user and display a name and number. Functions also called

getdata() and putdata() in the manager and scientist classes use the functions

in employee, and also do their own work.

In manager, the getdata() function asks the user for a title and the amount of

golf club dues, and putdata() displays these values. In scientist, these

functions handle the number of publications.

Access Combinations
There are so many possibilities for access that it’s instructive to look at an

example programthat shows what works and what doesn’t. Nere’s the listing

for Example 2:

 6 البرمجھ الشیئیھ هالمحاضره العاشر

Example 2:-

 7 البرمجھ الشیئیھ هالمحاضره العاشر

The program specifies a base class, A, with private, protected, and public

data items. Two classes, B and C, are derived from A. B is publicly derived

and C is privately derived.

As we’ve seen before, functions in the derived classes can access protected

and public data in the base class. Objects of the derived classes cannot

access private or protected members of the base class.

What’s new is the difference between publicly derived and privately derived

classes. Objects of the publicly derived class B can access public members

of the base class A, while objects of the privately derived class C cannot;

they can only access the public members of their own derived class. This is

shown in Figure 2.

Figure2: Public and private derivation.

 8 البرمجھ الشیئیھ هالمحاضره العاشر

Levels of Inheritance
Classes can be derived from classes that are themselves derived. Nere’s a

miniprogram that shows the idea:
class A

{ };

class B : public A

{ };

class C : public B

{ };

Nere B is derived from A, and C is derived from B. The process can be

extended to an arbitrary number of levels D could be derived from C, and so

on. Suppose that we decided to add a special kind of laborer called a

foreman to the EMPLOY program. Since a foreman is a kind of laborer, the

foreman class is derived from the laborer class, as shown in Figure 3.

Figure 3: class diagram for EMPLOY2.

 9 البرمجھ الشیئیھ هالمحاضره العاشر

Example 3:-Write an oo program to model employ database using multi

levels inheritance.

 10 البرمجھ الشیئیھ هالمحاضره العاشر

A class hierarchy results from generalizing common characteristics. The

more general the class, the higher it is on the chart. Thus a laborer is more

general than a foreman, who is a specialized kind of laborer, so laborer is

 11 البرمجھ الشیئیھ هالمحاضره العاشر

shown above foreman in the class hierarchy, although a foreman is probably

paid more than a laborer.

Multiple Inheritances

A class can be derived from more than one base class. This is called multiple

inheritances.

Figure 4 shows how this looks when a class C is derived from base classes A

and B.

Figure 4: class diagram for multiple inheritances.

The syntax for multiple inheritances is similar to that for single inheritance.

In the situation shown in Figure 4, the relationship is expressed like this:
class A // base class A
{
};
class B // base class B
{
};
class C : public A, public B // C is derived from A and B
{
};
The base classes from which C is derived are listed following the colon in

C’s specification; they are separated by commas.

 12 البرمجھ الشیئیھ هالمحاضره العاشر

Member Functions in Multiple Inheritance
Suppose that we need to record the educational experience of some of the

employees in the EMPLOY program. We’ve already developed a class

called student that models students with different educational backgrounds.

We decide that instead of modifying the employee class to incorporate

educational data, we will add this data by multiple inheritances from the

student class. The student class stores the name of the school or university

last attended and the highest degree received. Both these data items are

stored as strings. Two member functions, getedu() and putedu(), ask the user

for this information and display it. Educational information is not relevant to

every class of employee. We don’t need to record the educational experience

of laborers; it’s only relevant for managers and scientists. We therefore

modify manager and scientist so that they inherit from both the employee

and student classes, as shown in Figure 5.

Figure5 :UML class diagram for EMPMULT.

 13 البرمجھ الشیئیھ هالمحاضره العاشر

Example 4:-Write an oo program to model employ database using multiple

inheritances without using constructors.

 14 البرمجھ الشیئیھ هالمحاضره العاشر

 15 البرمجھ الشیئیھ هالمحاضره العاشر

The getdata() and putdata() functions in the manager and scientist classes

incorporate calls to functions in the student class, such as

student::getedu();

and

student::putedu();

These routines are accessible in manager and scientist because these classes

are descended from student.
Here’s some sample interaction with Eexample4:

Enter data for manager 1

Enter last name: Bradley

Enter number: 12

 16 البرمجھ الشیئیھ هالمحاضره العاشر

Enter title: Vice-President

Enter golf club dues: 100000

Enter name of school or university: Yale

Enter highest degree earned

(Highschool, Bachelor’s, Master’s, PhD): Bachelor’s

Enter data for scientist 1

Enter last name: Twilling

Enter number: 764

Enter number of pubs: 99

Enter name of school or university: MIT

Enter highest degree earned

(Highschool, Bachelor’s, Master’s, PhD): PhD

Enter data for scientist 2

Enter last name: Yang

Enter number: 845

Enter number of pubs: 101

Enter name of school or university: Stanford

Enter highest degree earned

(Highschool, Bachelor’s, Master’s, PhD): Master’s

Enter data for laborer 1

Enter last name: Jones

Enter number: 48323

Private Derivation in EMPMULT

The manager and scientist classes in EMPMULT are privately derived from

the employee and student classes. There is no need to use public derivation

because objects of manager and scientist never call routines in the employee

and student base classes. Nowever, the laborer class must be publicly

 17 البرمجھ الشیئیھ هالمحاضره العاشر

derived from employer, since it has no member functions of its own and

relies on those in employee.

Example 5:-Write an oo program to compute distance using constructors in

multiple inheritances.

 18 البرمجھ الشیئیھ هالمحاضره العاشر

No-Argument Constructor
The no-argument constructor in Type looks like this:

Type()

{ strcpy(dimensions, “N/A”); strcpy(grade, “N/A”); }

 19 البرمجھ الشیئیھ هالمحاضره العاشر

This constructor fills in “N/A” (not available) for the dimensions and grade

variables so the user will be made aware if an attempt is made to display

data for an uninitialized lumber object. You’re already familiar with the no-

argument constructor in the Distance class:

Distance() : feet(0), inches(0.0)

{ }

The no-argument constructor in Lumber calls both of these constructors.

Lumber() : Type(), Distance(), quantity(0), price(0.0)

{ }

The names of the base-class constructors follow the colon and are separated

by commas. When the Lumber() constructor is invoked, these base-class

constructors—Type() and Distance()— will be executed. The quantity and

price attributes are also initialized.

Multi-Argument Constructors

Nere is the two-argument constructor for Type:

Type(string di, string gr) : dimensions(di), grade(gr)

{ }

This constructor copies string arguments to the dimensions and grade

member data items. Nere’s the constructor for Distance, which is again

familiar from previous programs:

Distance(int ft, float in) : feet(ft), inches(in)

{ }

The constructor for Lumber calls both of these constructors, so it must

supply values for their arguments. In addition it has two arguments of its

own: the quantity of lumber and the unit price.

 20 البرمجھ الشیئیھ هالمحاضره العاشر

Thus this constructor has six arguments. It makes two calls to the two

constructors, each of which takes two arguments, and then initializes its own

two data items. Nere’s what it looks like:

Lumber(string di, string gr, //args for Type

int ft, float in, //args for Distance

int qu, float prc) : //args for our data

Type(di, gr), //call Type ctor

Distance(ft, in), //call Distance ctor

quantity(qu), price(prc) //initialize our data

{ }

Ambiguity in Multiple Inheritances
There are two types ambiguity in Multiple Inheritances

1. Two base classes have functions with the same name, while a class

derived from both base classes has no function with this name. Now

do objects of the derived class access the correct base class function?

The name of the function alone is insufficient, since the compiler

can’t figure out which of the two functions is meant.

Example: demonstrates ambiguity in multiple inheritance

#include <iostream.h>

class A

{

public:

void show() { cout << “Class A\n”; }

};

class B

 21 البرمجھ الشیئیھ هالمحاضره العاشر

{

public:

void show() { cout << “Class B\n”; }

};

class C : public A, public B

{

};

//

int main()

{

C objC; //object of class C

// objC.show(); //ambiguous--will not compile

objC.A::show(); //OK

objC.B::show(); //OK

return 0;

}

The problem is resolved using the scope-resolution operator to specify the

class in which the function lies. Thus

objC.A::show();

refers to the version of show() that’s in the A class, while

objC.B::show();

refers to the function in the B class.

2. Another kind of ambiguity arises if you derive a class from two

classes that are each derived from the same class. This creates a

diamond-shaped inheritance tree.

 22 البرمجھ الشیئیھ هالمحاضره العاشر

Example: investigates diamond-shaped multiple inheritance

#include <iostream.h>

class A

{

public:

void func();

};

class B : public A

{ };

class C : public A

{ };

class D : public B, public C

{ };

//

int main()

{

D objD;

objD.func(); //ambiguous: won’t compile

return 0;

}

Classes B and C are both derived from class A, and class D is derived by

multiple inheritance from both B and C. Trouble starts if you try to access a

member function in class A from an object of class D. In this example objD

tries to access func(). Nowever, both B and C contain a copy of func(),

inherited from A. The compiler can’t decide which copy to use, and signals

an error.

 1 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

Function Template
Suppose you want to write a function that returns the absolute value of two

numbers. The absolute value of a number is its value without regard to its

sign: The absolute value of 3 is 3, and the absolute value of –3 is also 3.

Ordinarily this function would be written for a particular data type:

int abs(int n) //absolute value of ints

{

return (n<0) ? -n : n; //if n is negative, return -n

}

Here the function is defined to take an argument of type int and to return a

value of this same type. But now suppose you want to find the absolute

value of a type long. You will need to write a completely new function:

long abs(long n) //absolute value of longs

{

return (n<0) ? -n : n;

}

And again, for type float:

float abs(float n) //absolute value of floats

{

return (n<0) ? -n : n;

}

The body of the function is written the same way in each case, but they are

completely different functions because they handle arguments and return

values of different types. It’s true that in C++ these functions can all be

overloaded to have the same name, but you must nevertheless write a

 2 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

separate definition for each one. (In the C language, which does not support

overloading, functions for different types can’t even have the same name. In

the C function library this leads to families of similarly named functions,

such as abs(), fabs(), labs(), and cabs().

Rewriting the same function body over and over for different types is time-

consuming and wastes space in the listing. Also, if you find you’ve made an

error in one such function, you’ll need to remember to correct it in each

function body. Failing to do this correctly is a good way to introduce

inconsistencies into your program. It would be nice if there were a way to

write such a function just once, and have it work for many different data

types. This is exactly what function templates do for you. The idea is shown

schematically in Figure 1.

Figure1: A function template.

 3 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

A Simple Function Template
The first example shows how to write our absolute-value function as a

template, so that it will work with any basic numerical type. This program

defines a template version of abs() and then, in main(), invokes this function

with different data types to prove that it works.

Example 1:Write an OO Program to find the absolute value using template
function

the output of the program:
abs(5)=5
abs(-6)=6
abs(70000)=70000
abs(-80000)=80000
abs(9.95)=9.95
abs(-10.15)=10.15

 4 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

 The abs() function now works with all three of the data types (int, long, and

double) that we use as arguments. It will work on other basic numerical

types as well, and it will even work on user-defined data types, provided that

the less-than operator (<) and the unary minus operator (-) are appropriately

overloaded.

Here’s how we specify the abs() function to work with multiple data types:

template <class T> //function template

T abs(T n)

{

return (n<0) ? -n : n;

}

This entire syntax, with a first line starting with the keyword template and

the function definition following, is called a function template. How does

this new way of writing abs() give it such amazing flexibility?

Function Template Syntax

The key innovation in function templates is to represent the data type used

by the function not as a specific type such as int, but by a name that can

stand for any type. In the preceding function template, this name is T. The

template keyword signals the compiler that we’re about to define a function

template. The keyword class, within the angle brackets, might just as well be

called type. You can define your own data types using classes, so there’s

really no distinction between types and classes. The variable following the

keyword class (T in this example) is called the template argument.

 5 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

Throughout the definition of the template, whenever a specific data type

such as int would ordinarily be written, we substitute the template argument,

T. In the abs() template this name appears only twice, both in the first line

(the function declarator), as the argument type and return type. In more

complex functions it may appear numerous times throughout the function

body as well.

What the Compiler Does

What does the compiler do when it sees the template keyword and the

function definition that follows it? The function template itself doesn’t cause

the compiler to generate any code. It can’t generate code because it doesn’t

know yet what data type the function will be working with. It simply

remembers the template for possible future use.

Code generation doesn’t take place until the function is actually called

(invoked) by a statement within the program. In example 1 this happens in

expressions like abs(int1) in the statement

cout << “\nabs(“ << int << “)=” << abs(int1);

When the compiler sees such a function call, it knows that the type to use is

int, because that’s the type of the argument int1. So it generates a specific

version of the abs() function for type int, substituting int wherever it sees the

name T in the function template. This is called instantiating the function

template, and each instantiated version of the function is called a template

function. (That is, a template function is a specific instance of a function

template.)The compiler also generates a call to the newly instantiated

function, and inserts it into the code where abs(int1) is. Similarly, the

 6 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

expression abs(lon1) causes the compiler to generate a version of abs() that

operates on type long and a call to this function, while the abs(dub1) call

generates a function that works on type double.

Function Templates with Multiple Arguments

The example bellow takes three arguments: two that are template arguments

and one of a basic type. The purpose of this function is to search an array for

a specific value. The function returns the array index for that value if it finds

it, or –1 if it can’t find it. The arguments are a pointer to the array, the value

to search for, and the size of the array.

Example 2:Write an OO Program to find number in the array value using
template function

 7 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

The output of program

5 in chrArray: index=2
6 in intArray: index=-1
11 in lonArray: index=4
4 in dubArray: index=-1

Class Templates

The template concept can be extended to classes. Class templates are

generally used for data storage (container) classes. The Stack class,” for

example, could store data only of type int. Here’s a condensed version of

that class.

class Stack
{
private:
int st[MAX]; //array of ints
int top; //index number of top of stack
public:
Stack(); //constructor
void push(int var); //takes int as argument
int pop(); //returns int value
};
If we wanted to store data of type long in a stack, we would need to define a

completely new class:

class LongStack
{
private:
long st[MAX]; //array of longs
int top; //index number of top of stack
public:
LongStack(); //constructor
void push(long var); //takes long as argument
long pop(); //returns long value
};

 8 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

Similarly, we would need to create a new stack class for every data type we

wanted to store.

Example 3:Write an OO Program to implement stack class using template class

Here’s the output:
1: 3333.3 //float stack
2: 2222.2
3: 1111.1
1: 345345345 //long stack
2: 234234234
3: 123123123

 9 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

Figure2: A class template.

Class Name Depends on Context

In the example 3, the member functions of the class template were all

defined within the class. If the member functions are defined externally

(outside of the class specification), we need a new syntax. The next program

shows how this works.

 10 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

Example 4: Write an OO Program to implement stack class using template class
with scope operator.

 11 البرمجھ الشیئیھ شردیھ عاالمحاضره الح

The expression template<class Type> must precede not only the class

definition, but each externally defined member function as well. Here’s how

the push() function looks:

template<class Type>
void Stack<Type>::push(Type var)
{
st[++top] = var;
}
The name Stack<Type> is used to identify the class of which push() is a

member. In a normal non-template member function the name Stack alone

would suffice:

void Stack::push(int var) //Stack() as a non-template function
{
st[++top] = var;
}
but for a function template we need the template argument as well:

Stack<Type>.

Thus we see that the name of the template class is expressed differently in

different contexts.

Within the class specification, it’s simply the name itself: Stack. For

externally defined member functions, it’s the class name plus the template

argument name: Stack<Type>. When you define actual objects for storing a

specific data type, it’s the class name plus this specific type:

Stack<float>, for example.

class Stack //Stack class specifier
{ };
void Stack<Type>::push(Type var) //push() definition
{ }
Stack<float> s1; //object of type Stack<float>

 1 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Virtual Functions

Virtual means existing in appearance but not in reality. When virtual

functions are used, a program that appears to be calling a function of one

class may in reality be calling a function of a different class. Why are virtual

functions needed? Suppose you have a number of objects of different classes

but you want to put them all in an array and perform a particular operation

on them using the same function call. For example, suppose a graphics

program includes several different shapes: a triangle, a ball, a square. Each

of these classes has a member function draw () that causes the object to be

drawn on the screen. Now suppose you plan to make a picture by grouping a

number of these elements together and you want to draw the picture in a

convenient way. One approach is to create an array that holds pointers to all

the different objects in the picture. The array might be defined like this:

shape* ptrarr[100]; // array of 100 pointers to shapes .If you insert pointers

to all the shapes into this array, you can then draw an entire picture using a

simple loop:

For (int j=0; j<N; j++) ptrarr[j]->draw(); This is an amazing capability:

Completely different functions are executed by the same function call. If the

pointer in ptrarr points to a ball, the function that draws a ball is called; if it

points to a triangle, the triangle-drawing function is called. This is called

polymorphism, which means different forms. The functions have the same

appearance, the draw() expression, but different actual functions are called,

depending on the contents of ptrarr[j]. Polymorphism is one of the key

features of object-oriented programming, after classes and inheritance.

 2 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

For the polymorphic approach to work, several conditions must be met.

1) First, all the different classes of shapes, such as balls and triangles, must

be descended from a single base class.

2) Second, the draw() function must be declared to be virtual in the base

class.

Normal Member Functions Accessed with Pointers

 Example 1 shows what happens when a base class and derived classes all

have functions with the same name, and you access these functions using

pointers but without using virtual functions.

Example 1:

 3 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

The Derv1 and Derv2 classes are derived from class Base. Each of these

three classes has a member function show (). In main () we create objects of

class Derv1 and Derv2, and a pointer to class Base. Then we put the address

of a derived class object in the base class pointer in the line

 ptr = &dv1; // derived class address in base class pointer .The rule is that

pointers to objects of a derived class are type compatible with pointers to

objects of the base class. Now the question is, when you execute the line

ptr->show(); what function is called? Is it Base::show() or Derv1::show()?

Again, in the last two lines of not virtual we put the address of an object of

class Derv2 in the pointer, and again execute ptr->show(); Which of the

show() functions is called here? The output from the program :

Base

Base

As you can see, the function in the base class is always executed. The

compiler ignores the contents of the pointer ptr and chooses the member

function that matches the type of the pointer, as shown in Figure 1

Figure 1 Nonvirtual pointer access.

 4 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Virtual Member Functions Accessed with Pointers

Let’s make a single change in our program: We’ll place the keyword virtual

in front of the declarator for the show() function in the base class. Here’s the

listing for the resulting program.

Example 2:

The output of this program is

Derv1

Derv2

 5 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

The member functions of the derived classes, not the base class, are

executed. We change the contents of ptr from the address of Derv1 to that of

Derv2, and the particular instance of show() that is executed also changes.

So the same function call ptr->show(); executes different functions,

depending on the contents of ptr. The rule is that the compiler selects the

function based on the contents of the pointer ptr, not on the type of the

pointer, as in not virtual. This is shown in Figure 2

Figure 2 Virtual pointer access.

Late Binding

The astute reader may wonder how the compiler knows what function to

compile. In not virtual the compiler has no problem with the expression ptr-

>show(); It always compiles a call to the show() function in the base class.

But in virtual the compiler doesn’t know what class the contents of ptr may

contain. It could be the address of an object of the Derv1 class or of the

Derv2 class. Which version of draw() does the compiler call? In fact the

 6 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

compiler doesn’t know what to do, so it arranges for the decision to be

deferred until the program is running.

At runtime, when it is known what class is pointed to by ptr, the appropriate

version of draw will be called. This is called late binding or dynamic

binding.

(Choosing functions in the normal way, during compilation, is called early

binding or static binding.) Late binding requires some overhead but

provides increased power and flexibility.

Abstract Classes and Pure Virtual Functions

When we will never want to instantiate objects of a base class, we call it an

abstract class. Such a class exists only to act as a parent of derived classes

that will be used to instantiate objects. It may also provide an interface for

the class hierarchy. By placing at least one pure virtual function in the base

class.

A pure virtual function is one with the expression =0 added to the

declaration. This is shown in the example3.

 7 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Example 3:

Here the virtual function show() is declared as virtual void show() = 0; //

pure virtual function .The equal sign here has nothing to do with

assignment; the value 0 is not assigned to anything. The =0 syntax is simply

how we tell the compiler that a virtual function will be pure. Now if in

main() you attempt to create objects of class Base, the compiler will

complain that you’re trying to instantiate an object of an abstract class. It

will also tell you the name of the pure virtual function that makes it an

abstract class. Notice that, although this is only a declaration, you never need

to write a definition of the base class show().

 8 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Virtual Functions and the person Class

�✁✂ that we understand some of the mechanics of virtual functions, let’s

look at a situation where it makes sense to use them. It uses the person class,

with two derived classes, student and professor. These derived classes each

contain a function called isOutstanding(). The person class is an abstract

class because it contains the pure virtual functions getData() and

isOutstanding().

Example 4:

 9 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Here’s some sample interaction:

Enter student or professor (s/p): s

Enter name: Timmy

Enter student’s GPA: 1.2

Enter another (y/n)? y

Enter student or professor (s/p): s

Enter name: Brenda

Enter student’s GPA: 3.9

Enter another (y/n)? y

Enter student or professor (s/p): s

Enter name: Sandy

Enter student’s GPA: 2.4

Enter another (y/n)? y

 10 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Enter student or professor (s/p): p

Enter name: Shipley

Enter number of professor’s publications: 714

Enter another (y/n)? y

Enter student or professor (s/p): p

Enter name: Wainright

Enter number of professor’s publications: 13

Enter another (y/n)? n

Name is: Timmy

Name is: Brenda

This person is outstanding

Name is: Sandy

Name is: Shipley

This person is outstanding

Name is: Wainright

Virtual Destructors

Base class destructors should always be virtual. Suppose you use delete with

a base class pointer to a derived class object to destroy the derived-class

object. If the base-class destructor is not virtual then delete, like a normal

member function, calls the destructor for the base class, not the destructor

for the derived class. This will cause only the base part of the object to be

destroyed. The program shows how this looks.

#include <iostream.h>

class Base

{

 11 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

public:

~Base() //non-virtual destructor

// virtual ~Base() //virtual destructor

{ cout << “Base destroyed\n”; }

};

class Derv : public Base

{

public:

~Derv()

{ cout << “Derv destroyed\n”; }

};

//

int main()

{

Base* pBase = new Derv;

delete pBase;

return 0;

}

The output for this program as written is Base destroyed

This shows that the destructor for the Derv part of the object isn’t called. In

the listing the base class destructor is not virtual, but you can make it so by

commenting out the first definition for the destructor and substituting the

second.

Now the output is

Derv destroyed

Base destroyed

 12 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Now both parts of the derived class object are destroyed properly. Of course,

if none of the destructors has anything important to do (like deleting

memory obtained with new) then virtual destructors aren’t important. But in

general, to ensure that derived-class objects are destroyed properly, you

should make destructors in all base classes virtual.

Most class libraries have a base class that includes a virtual destructor,

which ensures that all derived classes have virtual destructors.

Virtual Base Classes

Consider the situation shown in Figure 3, with a base class, Parent; two

derived classes, Child1 and Child2; and a fourth class, Grandchild, derived

from both Child1 and Child2.

In this arrangement a problem can arise if a member function in the

Grandchild class wants to access data or functions in the Parent class.

Figure 3 Virtual base classes.

// ambiguous reference to base class

class Parent

{

 13 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

protected:

int basedata;

};

class Child1 : public Parent

{ };

class Child2 : public Parent

{ };

class Grandchild : public Child1, public Child2

{

public:

int getdata()

{ return basedata; } // ERROR: ambiguous

};

A compiler error occurs when the getdata() member function in Grandchild

attempts to access basedata in Parent. Why? When the Child1 and Child2

classes are derived from Parent, each inherits a copy of Parent; this copy is

called a subobject. Each of the two subobjects contains its own copy of

Parent’s data, including basedata. Now, when Grandchild refers to basedata,

which of the two copies will it access? The situation is ambiguous, and

that’s what the compiler reports.

To eliminate the ambiguity, we make Child1 and Child2 into virtual base

classes, as shown by the example bellow.

 // virtual base classes

class Parent

{

 14 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

protected:

int basedata;

};

class Child1 : virtual public Parent // shares copy of Parent

{ };

class Child2 : virtual public Parent // shares copy of Parent

{ };

class Grandchild : public Child1, public Child2

{

public:

int getdata()

{ return basedata; } // OK: only one copy of Parent

};

The use of the keyword virtual in these two classes causes them to share a

single common subobject of their base class Parent. Since there is only one

copy of base data, there is no ambiguity when it is referred to in Grandchild.

The need for virtual base classes may indicate a conceptual problem with

your use of multiple inheritances, so they should be used with caution.

Polymorphism
Polymorphism is one of the crucial features of object oriented programming.

It simply means “one name, multiple forms”. However, polymorphism

allows an entity (variable, function or object) to take a variety of

representations (take a multiple forms).

 15 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Polymorphism refers to situation in which objects belonging to different

classes can respond to the same message, usually in different ways. For

example suppose we have classes box, triangle and circle, whose objects

represent the corresponding geometrical figures. The objects of these classes

might all understand a message draw (), which causes an object to draw the

corresponding figure on the screen.

In C++ Polymorphism is implemented via virtual functions.

Therefore we have to distinguish different three types of polymorphism:

 Polymorphism of Variables (or Members).

 Polymorphism of Functions (or Methods).

 Polymorphism of Objects.

A. Polymorphism of Variables:

The first type of polymorphism is similar to the concept of dynamic binding.

Here, the type of a variable depends on its content. Thus, its type depends on

the content at a specific time:

int a=5; //use a as integer

…..

char a=’g’; //use a as character

……

B. Polymorphism of Functions:

Another type of polymorphism can be defined for functions. For example,

suppose you want to define a function isNull() which returns TRUE if its

argument is zero and FALSE otherwise. For integer numbers this is easy:

 16 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Bool isNull(int r)

{

If (r==0)

Return(true)

Else

Return(false)

}

However, if we want to check this for float numbers, we should use another

comparison due to the precision problem:

Bool isNull(float k)

{

If (k<=0.01)&&(k>-0.99)

Return(true)

Else

Return(false)

}

In both cases we want the function to have the name isNull. In programming

languages without polymorphism for functions we cannot declare these two

functions because the name isNull would be doubly defined. Without

polymorphism for functions, doubly defined names would be ambiguous.

However, if the language would take the parameters of the function into

account it would work. Thus, functions (or methods) are uniquely identified

by:

 The name of the function (or method) and

 The types of its parameter list.

 17 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Since the parameter list of both isNull functions differs, the compiler is able

to figure-out the correct function call by using the actual types of the

arguments.

Int r;

Float k;

r=0;

k=0.0;

…..

If (isNull(r)) //use isNull integer

…..

If (isNull(k)) //use isNull float

This type of polymorphism allows us to reuse the same name for functions

(or methods) as long as the parameter list differs. Sometimes this type of

polymorphism is called overloading.

C. Polymorphism of Objects:

The last type of polymorphism allows an object to choose correct methods.

In this type, polymorphism refers to situation in which objects belong to

different classes can be respond to the same message, usually in different

ways. For example, suppose we have classes box, triangle, and circle,

whose objects represent the corresponding geometrical figures, as shown in

figure (4). The objects of these classes might all understand a message draw(

), which causes an object to draw the corresponding figure on the screen.

 11 البرمجھ الشیئیھ شرھ عالمحاضره الثانی

Figure 4: The class hierarchy for the figures example.

An essential feature of polymorphism is that we are able to send messages

without knowing the class of the recipient object. For example, we might

have a list of objects representing the figures that are to appear on the screen.

To display the figures, we can send a draw() message to every object on the

list, without having to worry about which objects represent boxes, which

represent circles, and so on.

A list containing objects from different classes is called a heterogeneous list.

Polymorphism greatly simplifies manipulating the objects in a

heterogeneous list.

	lecture 10 (class hierarchies)
	lecture 11 (Template function and class)
	lecture 12 (Virtual function and Polymorphism)

